
MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 13
 All Rights Reserved

Chapter 2

Getting Started with ASP.NET
MVC

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 14
 All Rights Reserved

Getting Started with ASP.NET MVC

Objectives

 After completing this unit you will be able to:

 Understand how ASP.NET MVC is used within
Visual Studio.

 Create several versions of a simple ASP.NET MVC
application.

 Understand how Views are rendered.

 Use the Razor view engine in ASP.NET MVC 5.

 Understand how dynamic output works.

 Pass input data to an MVC application in a query
string.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 15
 All Rights Reserved

An ASP.NET MVC 5 Testbed

 This courses uses the following software:

 Visual Studio 2019. The course was tested using the free
Visual Studio Community 2019.

 During installation you should install the following
workloads: .NET desktop development and ASP.NET and
web development.

 This includes bundled ASP.NET MVC 5.

 SQL Server Express 2016 LocalDB, which also comes
bundled with Visual Studio 2019. But you need to explicitly
choose to install it.

 Recommended operating system is Windows 7 SP1,
which is what was used in developing this course.

 If you want to practice deployment on IIS, you should
also have IIS installed.

 See Appendix B.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 16
 All Rights Reserved

Visual Studio ASP.NET MVC Demo

 Let’s use Visual Studio to create an ASP.NET MVC 5
Web Application project.

1. From the start window choose Create a new project.

2. In the next window choose ASP.NET Web Application (.NET
Framework). You may filter by C# and Web project type. Then
click Next.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 17
 All Rights Reserved

Configure Your Project

3. Browse to the C:\OIC\MvCs\Demos folder, and leave the
Project name as WebApplication1. Leave the Framework as
.NET Framework 4.7.2.

4. Click Create.

 You will be able to choose on the next window whether to
create a Web Forms, MVC, or Web API project.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 18
 All Rights Reserved

ASP.NET MVC Demo (Cont’d)

5. Choose MVC, and leave the checkboxes on right of window at
their default settings.

6. Click Create.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 19
 All Rights Reserved

ASP.NET Documentation Page

 You will see an ASP.NET documentation page
displayed.

 There are links to various resources.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 20
 All Rights Reserved

Starter Application

 Notice that there are separate folders for Controllers,
Models and Views.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 21
 All Rights Reserved

Starter Application (Cont’d)

 Build and run this starter application1:

1 Visual Studio will automatically start your default browser to run the application. In our screenshots you
will sometimes see Firefox and sometimes Internet Explorer. You may see a security warning. Accept the
risk and proceed.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 22
 All Rights Reserved

Simple App with Controller Only

 To start learning how ASP.NET MVC works, let’s
create a simple app with only a controller.

1. Create a new ASP.NET Web Application project with the name
MvcSimple in the Demos folder.

2. This time choose the Empty project template.

3. Check MVC in “Add folders and core references”. Note that the
same project can include any combination of Web Forms, MVC
and Web API.

4. Click Create.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 23
 All Rights Reserved

Demo: Controller Only (Cont’d)

5. Right-click over the Controllers folder and choose Add |
Controller from the context menu.

6. Choose MVC 5 Controller - Empty for the scaffold.

7. Click Add.

8. Provide the name HomeController

9. Click Add.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 24
 All Rights Reserved

Demo: Controller Only (Cont’d)

10. Examine the generated code HomeController.cs.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace MvcSimple.Controllers
{
 public class HomeController : Controller
 {
 //
 // GET: /Home/
 public ActionResult Index()
 {
 return View();
 }

 }
}

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 25
 All Rights Reserved

Demo: Controller Only (Cont’d)

11. Replace the code for the Index() method by the following.
Also, provide a similar Foo() method.

 public class HomeController : Controller
 {
 // GET: /Home/
 public string Index()
 {
 return "Hello from Index";
 }

 public string Foo()
 {
 return "Hello from Foo";
 }
}

12. Build and run. If your browser warns about security, accept

the risk and continue.

13. Examine the URL Visual Studio used to invoke the
application. (The port number varies.)

https://localhost:44313/

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 26
 All Rights Reserved

Demo: Controller Only (Cont’d)

14. Now try using these URLs2. You should get the same result.

http://localhost:44313/Home/
http://localhost:44313/Home/Index/

15. Now try this URL.

http://localhost:44313/Home/Foo/

You will see the second method Foo() invoked:

16. Finally, let’s add a second controller SecondController.cs.

17. Provide the following code for the Index() method of the
second controller.

 public class SecondController : Controller
 {
 // GET: /Second/
 public string Index()
 {
 return "Hello from second controller";
 }
 }

2 The trailing forward slash in these URLs is optional.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 27
 All Rights Reserved

Demo: Controller Only (Cont’d)

18. You can invoke this second controller using either of these
URLs:

http://localhost:44313/Second/
http://localhost:44313/Second/Index/

In either case we get the following result. The program at this point
is saved in MvcSimple\Controller in the chapter folder3.

3 You should open all the ASP.NET MVC examples as projects, not web sites.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 28
 All Rights Reserved

Action Methods and Routing

 Every public method in a controller is an action
method.

 This means that the method can be invoked by some URL.

 The ASP.NET MVC routing mechanism determines
how each URL is mapped onto particular controllers
and actions.

 The default routing is specified in the file
RouteConfig.cs, contained in the App_Start folder.

public static void RegisterRoutes(RouteCollection
routes)
{
 routes.IgnoreRoute(
 "{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 name: "Default",
 url: "{controller}/{action}/{id}",
 defaults: new { controller = "Home",
 action = "Index",
 id = UrlParameter.Optional }
);
}

 If desired, additional route maps can be set up here.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 29
 All Rights Reserved

Action Method Return Type

 An action method normally returns a result of type
ActionResult.

 An action method can return any type, such as string, int,
and so on, but then the return value is wrapped in an
ActionResult.

 The most common action of an action method is to
call the View() helper method, which returns a result
of type ViewResult, which derives from ActionResult.

 The table shows some of the important action result
types, which all derive from ActionResult.

Action Result Helper Method Description

ViewResult View() Renders a view as a Web page,
typically HTML

RedirectResult Redirect() Redirects to another action
method using its URL

JsonResult Json() Returns a serialized Json
object

FileResult File() Returns binary data to write to
the response

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 30
 All Rights Reserved

Rendering a View

 Our primitive controllers simply returned a text
string to the browser.

 Normally, you will want an HTML page returned.
This is done by rendering a view.

 The controller will return a ViewResult using the helper
method View().

public ViewResult Index()
{
 return View();
}

 Try doing this in the MvcSimple program. Build and
run. It compiles but you get a runtime error.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 31
 All Rights Reserved

Creating a View in Visual Studio

 The error message is quite informative!

 Let us create an appropriate file Index.cshtml in the folder
Views/Home.

 In Visual Studio you can create a view by right-
clicking in the action method. Choose Add View.

 Clear the check box for layout page and click Add

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 32
 All Rights Reserved

The View Web Page

 A file Index.cshtml is created in the Views\Home
folder.

 Edit this file to display a welcome message from the view.
To make it stand out, use H2 format.

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport"
 content="width=device-width" />
 <title>Index</title>
</head>
<body>
 <h2>Hello from the View</h2>
</body>
</html>

 Build and run.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 33
 All Rights Reserved

Dynamic Output

 ViewBag is a dynamic type that can be used for
passing data from the controller to the view, enabling
the rendering of dynamic output.

 This code in the controller stores the current time.

public ViewResult Index()
{
 ViewBag.Time =
 DateTime.Now.ToLongTimeString();
 return View();
}

 This markup in the view page displays the data.

 <h2>Hello from the View</h2>
 The time is @ViewBag.Time

 Here is a run:

 The program is saved in MvcSimple\View.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 34
 All Rights Reserved

Razor View Engine

 From the beginning ASP.NET MVC has supported
“view engines”, which are pluggable components that
implement different syntax options for view
templates.

 In ASP.NET MVC 1 and 2 the default view engine is
the Web Forms (or ASPX) view engine.

 In ASP.NET MVC 3 and 4 the default view engine is
Razor.

 In creating a view, Visual Studio allowed you to choose
whether to use ASPX or Razor.

 Razor template syntax is much more concise than
ASPX template syntax.

 You use @ in place of <%= ... %>

 The Razor parser makes use of syntactic knowledge of C#
code (in a .cshtml file) or of VB code (in a .vbhtml file).

 In ASP.NET MVC 5 the Razor view engine is used
automatically, and we will employ it in our examples.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 35
 All Rights Reserved

Embedded Scripts

 Razor makes it easy to use embedded C# script in an
HTML page. Simply enclose it with @{}.

@{
 int day = 0;
 int gifts = 0;
 int total = 0;
 while (day < 12)
 {
 day += 1;
 gifts += day;
 total += gifts;
 }
 }

 You can convert an object to a string and display it in
HTML simply by using the @ symbol in front of it.

<p>Total number of gifts = @total</p>

 Inside an embedded script you can simply use HTML
elements, giving you great flexibility in output.

 You can use literal text by prefacing it with @:.

@{
 ...
 while (day < 12)
 {
 day += 1;
 gifts += day;
 total += gifts;
 @:On day @day number of gifts = @gifts

 }
}

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 36
 All Rights Reserved

Embedded Script Example

 See MvcSimple\Script.

@{
 int day = 0;
 int gifts = 0;
 int total = 0;
 while (day < 12)
 {
 day += 1;
 gifts += day;
 total += gifts;
 @:On day @day number of gifts = @gifts

 }
}

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 37
 All Rights Reserved

Using a Model with ViewBag

 Our next version of the program uses a model along
with the ViewBag.

 See MvcSimple\ModelViewBag in the chapter folder.

 The model contains a class defining a Person.

 See the file Person.cs in the Models folder of the project.

 There are public properties Name and Age.

 Unless otherwise assigned, Name is “John” and Age is 33.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace MvcSimple.Models
{
 public class Person
 {
 public string Name { get; set; }
 public int Age { get; set; }
 public Person()
 {
 Name = "John";
 Age = 33;
 }
 }
}

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 38
 All Rights Reserved

Controller Using Model and ViewBag

 The controller instantiates a Person object and passes
it in ViewBag.

 Note that we need to import the MvcSimple.Models
namespace.

using MvcSimple.Models;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace MvcSimple.Controllers
{
 public class HomeController : Controller
 {
 // GET: /Home/
 public ViewResult Index()
 {
 ViewBag.person = new Person();
 return View();
 }
 }
}

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 39
 All Rights Reserved

View Using Model and ViewBag

 The view displays the output using appropriate
script.

 Again we need to import the MvcSimple.Models namespace.

@{
 Layout = null;
}
@using MvcSimple.Models;
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-
width" />
 <title>Index</title>
</head>
<body>
 @{ Person p = ViewBag.person;}
 <h2>Using model data:</h2>
 <p>Name = @p.Name</p>
 <p>Age = @p.Age </p>
</body>

 The output:

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 40
 All Rights Reserved

Using Model Directly

 You may pass a single model object to a view through
the use of an overloaded constructor of the View()
method.

 For an example see MvcSimple\Model.

 To see how this works, first rewrite the controller.

public ViewResult Index()
{
 return View(new Person());
}

 The parameter to the overload of the View() method is a
model object.

 Next, rewrite the view page.

@model MvcSimple.Models.Person

...

<body>
 <h2>Using model data:</h2>
 <p>Name = @Model.Name</p>
 <p>Age = @Model.Age </p>
</body>
</html>

 The Person object is passed as a parameter to the view, and
the model object can be accessed through the variable
Model.

 We no longer need the script code.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 41
 All Rights Reserved

A View Using Model in Visual Studio

 To create a view using a Model in Visual Studio,
right-click inside an action method and choose Add
View from the context menu.

 You may create a view tied to the model by selecting
a model from the dropdown.

 You should build the application first in order that the
dropdown be populated.

 Select the Empty template, rather than the Empty (without
model) template.

 You can demonstrate this for yourself by deleting the view in
the MvcSimple\Model example.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 42
 All Rights Reserved

View Created by Visual Studio

 Here is the view page created by Visual Studio:

@model MvcSimple.Models.Person

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport"
 content="width=device-width" />
 <title>Index</title>
</head>
<body>
 <div>
 </div>
</body>
</html>

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 43
 All Rights Reserved

Passing Parameters in Query String

 In MVC applications you will typically need to
handle input data in one manner or another.

 A simple way to pass input data is through the query
string on the URL that invokes the application.

 For an example, see the MvcHello application in the
chapter folder.

 Pass the name in the query string, for example:

/Home/Index?name=Bob

 The Index action method in the home controller takes name
as a parameter, which is stored in the ViewBag.

// GET: /Home/Index?name=x
public ActionResult Index(string name)
{
 ViewBag.Name = name;
 return View();
}

 The view displays a greeting using the name.

<body>
 <h2>Hello, @ViewBag.Name</h2>
</body>

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 44
 All Rights Reserved

Lab 2

Contact Manager Application

In this lab you will implement an ASP.NET MVC application that
creates a contact and displays it on the page. The contact can be
changed by passing the first and last names in the query string. The
model persists the contact in a flat file.

Detailed instructions are contained in the Lab 2 write-up at the end
of the chapter.

Suggested time: 30 minutes

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 45
 All Rights Reserved

Summary

 You can begin creating an ASP.NET MVC
application with the controller, which handles various
URL requests.

 From an action method of a controller you can create
a view using Visual Studio.

 ASP.NET MVC 5 uses the Razor view engine.

 You can pass data from the controller to the view by
using the ViewBag.

 By creating a model you can encapsulate the business
data and logic.

 You can pass data to an MVC application in query
string.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 46
 All Rights Reserved

Lab 2

Contact Manager Application

Introduction

In this lab you will implement an ASP.NET MVC application that creates a contact and
displays it on the page. The contact can be changed by passing the first and last names in
the query string. The model persists the contact in a flat file.

Suggested Time: 30 minutes

Root Directory: C:\OIC\MvcCs

Directories: Labs\Lab2 (do your work here)
 Labs\Lab2\Contact.cs (code for model)
 Chap02\MvcContact (solution)

Instructions

1. Create a new ASP.NET Empty Web Application MvcContact in the working

directory. Add folders and core references for MVC.

2. Copy the file Contact.cs defining a model class to the Models folder and add it to
your new project. Examine the code. There are public properties FirstName and
LastName and public static methods to read and write the contact to the flat file
contact.txt in the \OIC\Data folder. A constructor initializes the contact to what is
read in from the file.

3. Right-click over the Controllers folder and choose Add | Controller from the context
menu. Select the MVC 5 Controller – Empty template and click Add.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 47
 All Rights Reserved

4. Assign name HomeController and click Add.

5. Add a view corresponding to the Index() action method. Use the suggested name
Index and the Empty (without model) template. Do not use a layout page.

6. Make the title of the view “Contact Manager”. Provide HTML for a little help page
consisting of an unordered list showing three URLs for invoking the application,
corresponding to action methods Index, Show and Set. The latter takes a query string
specifying first and last names.

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Contact Manager</title>
</head>
<body>
 <h2>Contact Manager</h2>

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 48
 All Rights Reserved

 /Home/Index
 /Home/Show
 /Home/Set?first=x,last=y

</body>
</html>

7. Build and run the application. You should see the help page displayed.

8. Provide a Show() action method. Use an override of View() that takes the name of the
view as the first argument and an object as the second object. Use a new Contact as
the object.

// GET: /Home/Show
public ActionResult Show()
{
 return View("Show", new Contact());
}

9. Import the namespace MvcContact.Models so that you can access the Contact class.

10. Build the project to make sure you get a clean compile and so that you can use the
model when you create the view.

11. Right-click inside this new action method to add a view. Accept the suggested name
Show. From the dropdown for Model class select the Contact class. See screen
capture on the following page.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 49
 All Rights Reserved

12. The scaffolding will have placed a @model directive at the top of the .cshtml file.

Provide Razor HTML code to display the first and last names separated by a space.

@model MvcContact.Models.Contact

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Show</title>
</head>
<body>
 <div>
 Name = @Model.FirstName @Model.LastName
 </div>
</body>
</html>

13. Build and run. You should initially see the help page. Then modify the URL in the

browser to invoke Show:

/Home/Show

 You should see the default name that is stored in the file.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 50
 All Rights Reserved

14. Next provide a third controller action method Set() which takes as parameters strings
for the first and last name. As a comment, show the query string by which the
parameters will be passed in the URL. The code should write the contact to the flat
file and store the first and last names in the ViewBag.

// GET: /Home/Set?first=x,last=y
public ActionResult Set(string first, string last)
{
 Contact.WriteContact(first, last);
 ViewBag.First = first;
 ViewBag.Last = last;
 return View();
}

15. Add a corresponding view, in which you display the parameters as stored in the

ViewBag.

<body>
 <h2>Setting new contact</h2>
 <p>First name = @ViewBag.First</p>
 <p>Last name = @ViewBag.Last</p>
</body>

16. Build and run. Invoke Set, providing first and last names in the query string, for

example:

/Home/Set?first=Bob&last=Brown

17. Finally, invoke Show again. You should see the new contact displayed.

/Home/Show

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 51
 All Rights Reserved

18. As a final adjustment to the project, set the project properties so that you will always

display the home page when you run the application, not whatever view happens to
be open in the editor. You can do this by setting the Start Action to a specific page,
which will be Home/Index.

 EVALU

ATIO
N

MvcCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 52
 All Rights Reserved

 EVALU

ATIO
N

